<u>Exercise 9.1 (Revised) - Chapter 9 - Some Applications Of Trigonometry - Ncert</u> <u>Solutions class 10 - Maths</u>

Updated On 11-02-2025 By Lithanya

NCERT Class 10 Maths: Chapter 9 - Some Applications of Trigonometry Solutions

Ex 9.1 Question 1.

A circus artist is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30° (see figure).

Answer.

In right triangle ABC, $\sin 30^{\circ} = \frac{AB}{AC}$ $\Rightarrow \frac{1}{2} = \frac{AB}{20}$ AB = 20/2 $\Rightarrow AB = 10 \text{ m}$

Hence, the height of the pole is 10 m.

Ex 9.1 Question 2.

A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8 m. Find the height of the tree.

Answer.

Let AC be the broken part of tree

In right triangle ABC, $\cos 30^\circ = rac{\mathrm{BC}}{\mathrm{AC}}$

Get More Learning Materials Here :

Ex 9.1 Question 3.

A contractor plans to install two slides for the children to play in a park. For the children below the age of 5 years, she prefers to have a slide whose top is at a height of 1.5 m and is inclined at an angle of 30° to the ground, whereas for elder children, she wants to have a steep slide at a height of 3 m and inclined at an angle of 60° to the ground. What should be the length of the slide in each case?

Answer.

In right triangle ABC,

 $\Rightarrow AC = 3 \text{ m}$

In right triangle PQR,

 $\sin 60^{\circ} = \frac{PQ}{PR}$ $\Rightarrow \frac{\sqrt{3}}{2} = \frac{3}{PR}$ $\Rightarrow PR = 2\sqrt{3} \text{ m}$

Hence, the lengths of the slides are $3~{
m m}$ and $2\sqrt{3}~{
m m}$ respectively.

Ex 9.1 Question 4.

The angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30° . Find the height of the tower.

Answer.

In right triangle ABC, AB be the height of the tower. $\tan 30^\circ = \frac{AB}{BC}$

Get More Learning Materials Here : 🗾

Ex 9.1 Question 5.

A kite is flying at a height of 60 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60° . Find the length of the string, assuming that there is no slack in the string.

Answer.

In right triangle ABC, AC is the length of the string

Hence the length of the string is $40\sqrt{3}$ m.

Ex 9.1 Question 6.

A 1.5 m tall boy is standing at some distance from a 30 m tall building. The angle of elevation from his eyes to the top of the building increases from 30° to 60° as he walks towards the building. Find the distance he walked towards the building.

Answer.

AC = AB - BC= AB - PR(As, BC = PR) = 30 - 1.5 = 28.5 m

In right triangle ACQ, $\tan 60^{\circ} = \frac{AC}{QC}$ $\Rightarrow \sqrt{3} = \frac{28.5}{QC} \Rightarrow QC = \frac{28.5}{\sqrt{3}}$ m

Get More Learning Materials Here : 🗾

In right triangle ACP,

$$\tan 30^{\circ} = \frac{AC}{PC} \Rightarrow \frac{1}{\sqrt{3}} = \frac{28.5}{PQ + QC}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{28.5}{PQ + \frac{28.5}{\sqrt{3}}}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{28.5 \times \sqrt{3}}{PQ\sqrt{3} + 28.5}$$

$$\Rightarrow PQ\sqrt{3} + 28.5 = 85.5$$

$$\Rightarrow PQ\sqrt{3} = 57$$

$$\Rightarrow PQ = \frac{57}{\sqrt{3}}$$

$$\Rightarrow PQ = \frac{57}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = 19\sqrt{3} \text{ m}$$

Hence, the distance the boy walked towards the building is $19\sqrt{3}$ m.

Ex 9.1 Question 7.

From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower.

Answer.

Let the height of the tower be $h ext{ m}$. Then, in right triangle CBP,

$$\Rightarrow 1 = \frac{20}{BP} \Rightarrow BP = 20 \text{ m}$$

Putting this value in eq. (i), we get,

$$\sqrt{3} = \frac{20+h}{20}$$
$$\Rightarrow 20\sqrt{3} = 20+h$$
$$\Rightarrow h = 20\sqrt{3} - 20$$
$$\Rightarrow h = 20(\sqrt{3} - 1)$$

⇒ $h = 20(\sqrt{3} - 1)m$ ∴ The height of the tower is $20(\sqrt{3} - 1)m$. **Ex 9.1 Question 8.**

A statue, 1.6 m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point the angle of elevation of the top of the pedestal is 45° . Find the height of the pedestal.

Answer.

Let the height of the pedestal be h m. $\therefore \text{ BC} = h \text{ m}$

In right triangle ACP,

Get More Learning Materials Here : 💴

Hence, the height of the pedestal is $0.8(\sqrt{3}+1)$ m.

Ex 9.1 Question 9.

The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60° . If the tower is 50 m high, find the height of the building.

Answer.

Let the height of the building be h m.

In right triangle PQB, $\tan 60^{\circ} = \frac{PQ}{BQ} \Rightarrow \sqrt{3} = \frac{50}{BQ}$ $\Rightarrow BQ = \frac{50}{\sqrt{3}} \text{m.....(i)}$ In right triangle *ABQ*,

 $\tan 30^{\circ} = \frac{AB}{BQ} \Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{BQ}$ $\Rightarrow BQ = h\sqrt{3} \text{ m.....(ii)}$

Get More Learning Materials Here : 🚛

From eq. (i) and (ii),
$$h\sqrt{3}=rac{50}{\sqrt{3}}\Rightarrow h=rac{50}{3}=16rac{2}{3}\mathrm{m}$$

Ex 9.1 Question 10.

Two poles of equal heights are standing opposite each other on either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30° respectively. Find the height of the poles and the distances of the point from the poles.

Answer.

Let the height of each poles be ${\rm Hm}$ ${\rm AB}={\rm PQ}={\rm H}$

In right triangle PRQ,

$$\tan 60^{\circ} = \frac{PQ}{QR} \Rightarrow \sqrt{3} = \frac{H}{h}$$
$$\Rightarrow H = h\sqrt{3} \text{ m} \dots \dots (i)$$

In right triangle ABR,
$$\tan 30^{\circ} = \frac{AB}{BR}$$
$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{H}{80 - h}$$
$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h\sqrt{3}}{80 - h} [\text{From eq. (i)}]$$
$$\Rightarrow 80 - h = 3h$$
$$\Rightarrow 4h = 80$$
$$\Rightarrow h = 20 \text{ m}$$
$$\therefore H = h\sqrt{3} = 20\sqrt{3} \text{ m}$$

Also, $BR = 80 - h = 80 - 20 = 60 \ {
m m}$

Hence the heights of the poles are $20\sqrt{3}$ m each and the distances of the point from poles are 20 m and 60 m respectively. **Ex 9.1 Question 11.**

A TV tower stands vertically on a bank of a canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is 60° . From another point 20 m away from this point on the line joining this point to the foot of the tower, the angle of elevation of the top of the tower is 30° (see figure). Find the height of the tower and the width of the canal.

Answer.

Let AB be the TV tower.

In right triangle ABC, $\tan 60^{\circ} = \frac{AB}{BC} \Rightarrow \sqrt{3} = \frac{AB}{BC}$ $\Rightarrow AB = BC\sqrt{3} \text{ m......(i)}$

In right triangle ABD,

Get More Learning Materials Here : 🗾

$$\tan 30^{\circ} = \frac{AB}{BD}$$
$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{AB}{BC + CD}$$
$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{AB}{BC + 20}$$
$$\Rightarrow AB = \frac{BC + 20}{\sqrt{3}} \text{m.}$$

From eq. (i) and (ii), $BC\sqrt{3} = \frac{BC + 20}{\sqrt{3}}$ $\Rightarrow 3BC = BC + 20$ $\Rightarrow BC = 10 \text{ m}$

From eq. (i), $AB = 10\sqrt{3}$ m Hence height of the tower is $10\sqrt{3}$ m and the width of the canal is 10 m. **Ex 9.1 Question 12.**

From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45° . Determine the height of the tower.

Answer.

In right triangle ABD, $\tan 45^\circ = \frac{AB}{BD}$

 $\Rightarrow AE = 7 \text{ m}$ In right triangle AEC, $\tan 60^{\circ} = \frac{CE}{AE}$ $\Rightarrow \sqrt{3} = \frac{CE}{7}$ $\Rightarrow CE = 7\sqrt{3} \text{ m}$ $\therefore CD = CE + ED$ = CE + AB(AsAB = ED) $= 7\sqrt{3} + 7 = 7(\sqrt{3} + 1)\text{m}$

Hence height of the tower is $7(\sqrt{3}+1){
m m}.$

Ex 9.1 Question 13.

As observed from the top of a 75 m high lighthouse from the sea-level, the angles of depression of two ships are 30° and 45° . If one ship is exactly behind the other on the same side of the lighthouse, find the distance between two ships.

Answer.

Get More Learning Materials Here : 💻

Hence the distance between the two ships is $75(\sqrt{3}-1){
m m}.$

Ex 9.1 Question 14.

A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any distant is 60° After some time, the angle of elevation reduces to 30° (see figure). Find the distance travelled by the balloon during the interval.

Answer.

As, per question; AB = PQ = 88.2 - 1.2 = 87 m

In right triangle ABC, $\mbox{tan}\,60^\circ = {AB\over BC}$

$$\Rightarrow BC = rac{BC}{\sqrt{3}} = 29\sqrt{3} \text{ m}$$

Get More Learning Materials Here : 🗾

Regional www.studentbro.in

n right triangle PQC,

$$\tan 30^{\circ} = \frac{PQ}{CQ}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{87}{29\sqrt{3} + BQ}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{88.2}{\frac{88.2}{\sqrt{3}} + BQ}$$

$$\Rightarrow 29\sqrt{3} + BQ = 87\sqrt{3}$$

$$\Rightarrow BQ = 58\sqrt{3} \text{ m}$$

Hence the distance travelled by the balloon during the interval is $58\sqrt{3}$ m. Ex 9.1 Question 15.

A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of 30° , which is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depression of the car is found to be 60° . Find the time taken by the car to reach the foot of the tower from this point.

Answer.

In right triangle ABP, $an 30^\circ = rac{ ext{AB}}{ ext{BP}}$ (Top) A х 230° 60° Tower 60° 30° в Q (Foot) (Car) (Car) $\Rightarrow \frac{1}{\sqrt{3}} = \frac{AB}{BP}$ $\Rightarrow BP = AB\sqrt{3}$ In right triangle ABQ, $an 60^\circ = {AB\over BQ}$ $\Rightarrow \sqrt{3} = \frac{AB}{BQ}$ $\Rightarrow BQ = \frac{AB}{\sqrt{3}}$((ii) $\because PQ = BP - BQ$ $\therefore PQ = AB\sqrt{3} - \frac{AB}{\sqrt{3}}$ $=rac{3AB-AB}{\sqrt{3}}=rac{2AB}{\sqrt{3}}=2BQ \; [ext{From eq. (ii)}]$ $\Rightarrow BQ = \frac{1}{2}PQ$

 \therefore Time taken by the car to travel a distance PQ=6 seconds.

 \therefore Time taken by the car to travel a distance BQ, i.e. $\frac{1}{2}PQ = \frac{1}{2} \times 6 = 3$ seconds. Hence, the further time taken by the car to reach the foot of the tower is 3 seconds.

Ex 9.1 Question 16.

The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are complementary. Prove that the height of the tower is $6 ext{ m}$.

Answer.

Let $\angle APB = heta$ Then, $\angle AQB = (90^{\circ} - \theta)$

Get More Learning Materials Here : 📕

[igstarrow APB and igstarrow AQB are complementary] In right triangle ABP,

$$an heta = rac{AB}{PB} \ \Rightarrow an heta = rac{AB}{9}$$

In right triangle ABQ ,

$$an(90^\circ- heta)=rac{\mathrm{AB}}{\mathrm{QB}} \ \Rightarrow \cot heta=rac{\mathrm{AB}}{4}.\ldots\ldots$$

Multiplying eq. (i) and eq. (ii), $\frac{AB}{9} \cdot \frac{AB}{4} = \tan \theta \cdot \cot \theta$ $\Rightarrow \frac{AB^2}{36} = 1 \Rightarrow AB^2 = 36$ $\Rightarrow AB = 6 \text{ m}$

Hence, the height of the tower is 6 m. Proved.

Get More Learning Materials Here :

